李平润,男,山东济宁市兖州区人,中共党员,理学博士,教授,博士研究生导师,博士后合作导师,在中国科学技术大学获得理学博士学位,国家自然科学基金通讯评审专家,国家博士、硕士研究生学位论文评审专家,山东省自然科学基金通讯评审专家,伟德BETVlCTOR1946杏坛学者。基础数学,主要研究方向:复分析及其应用、复边值问题与积分方程、Clifford分析、多复变函数论、复偏微分方程。其博士论文“卷积型奇异积分方程与边值理论”是国内第一篇系统研究卷积型积分方程与解析函数边值问题的长文。一直从事于复边值问题、多复变函数论、以及Clifford分析的研究,在国际重要SCI数学期刊发表论文近30篇,尤其在复边值理论与奇异积分方程、 Clifford分析以及Hermitean Clifford分析中的边值问题与奇异积分方程及其应用做了一系列的工作,所研究的成果对前人的工作做出了不少改进,产生了诸多有创新性的方法,其工作具系列性和先进性, 并进一步推动了单复变和多复变中的全纯函数边值问题与奇异积分方程的发展,改变了低维的全纯函数边值问题与奇异积分方程近二三十年停滞不前的现状。
近几年,在以下国内外核心学术期刊以第一作者发表学术论文50多篇:《Journal of Differential Equations》、《Journal of Computational and Applied Mathematics》、《Journal of Mathematical Analysis and Applications》、《Acta Applicandae Mathematicae》、《Analysis and Mathematical Physics》、《Applied Mathematics and Computation》、《Numerical Functional Analysis and Optimization》、《Complex Variables and Elliptic Equations》、《Mathematical Methods in the Applied Sciences》等,其中有27篇被SCI收录(一区与二区TOP期刊7篇,二区5篇,三区12篇,ESI高被引论文2篇)。特别在世界一流SCI数学期刊Journal of Differential Equations 发表论文:Solvability of singular integro-differential equations via Riemann-Hilbert problem,该文运用调和分析、傅里叶分析和全纯函数边值问题的有关理论解决了一类高阶奇异积分-微分方程的求解问题(全纯函数边值问题的一类重要问题)。Journal of Differential Equations 杂志是数学领域公认的世界顶级期刊,在国际上有很高的影响,年总体发表文章数量不多并且论文的接收率非常低,特别该文以复分析专业背景在微分方程领域发表高水平论文,充分体现了学科交叉研究的优势。
目前主持国家自然科学基金面上项目一项(项目批准号11971015,批准直接经费52万),主持或参与省部级、校级科研项目多项。主讲的本科生课程有:复变函数论、常微分方程、概率论选讲等课程;主讲的研究生课程有:复分析、复边值问题与积分方程、Clifford分析、多复变函数论、复分析与复几何等课程。出版30万字的高等学校数学专业教材1部:复变函数论(中国科学技术大学出版社,2019年)。出版专著:解析函数边值问题与积分方程(科学出版社,2022年)。获得山东省高等学校优秀科研成果奖和济宁市科技创新优秀成果奖。指导本科生获得国家级、省级创新训练计划项目一等奖各1项,指导全国老员工数学竞赛获得山东赛区一等奖2项,指导本科生获得校级优秀毕业论文、讲课比赛一等奖等多项。
注重加强与国内外同行专家的学术交流与合作,多次参加 “全国多复变函数论学术年会”、“积分方程、边值问题及其应用”与“中国复分析会议”等国内外学术会议并在会议上宣读论文,进行学术交流,受到国内外同行专家的充分肯定与好评。目前担任国际上多个SCI期刊和国内核心期刊的特约审稿人(Applied Mathematics and Computation、Journal of Computational and Applied Mathematics、Complex Variables and Elliptic Equations、Computational and Applied Mathematics、Neural Processing Letters 等等)。
联系方式:邮编273165, 山东省曲阜市静轩西路57号,伟德BETVlCTOR1946。 邮箱地址:lipingrun@163.com;QQ:1223993697.
近几年发表的部分SCI论文目录:
[1]李平润, 任广斌, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Differential Equations, 265 (2018), 5455-5471. SCI一区TOP
期刊,世界一流期刊
[2]李平润, Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 344-345 (2019), 116-127. SCI一区TOP期刊
[3]李平润, Generalized convolution-type singular integral equations, Appl. Math. Comput., 311(2017), 314-323. SCI二区TOP期刊
[4]李平润, 任广斌, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 284(2016), 185-194. SCI二区TOP期刊
[5]李平润, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach,Journal of Computational and Applied Mathematics, 370(2)(2020) 112601. SCI二区TOP期刊
[6]李平润, The solvability and explicit solutions of singular integral-differential equations of non-normal type via Riemann-Hilbert problem, Journal of Computational and Applied Mathematics, 374(2)(2020) 112759. SCI二区TOP期刊
[7]李平润, Non-normal type singular integral-differential equations by Riemann Hilbert approach,Journal of Mathematical Analysis and Applications, 483(2)(2020) 123643. SCI二区
[8]李平润, Holomorphic solutions and solvability theory for a class of linear complete singular integro-differential equations with convolution, Analysis and Mathematical Physics, (2022) 12:146, SCI二区
[9]李平润, Existence of analytic solutions for some classes of singular integral equations of non-normal type with convolution kernel, Acta Applicandae Mathematicae, 181: 1 (2022). SCI三区
[10]李平润, Solvability theory of some kinds of Cauchy singular integral equations with convolution operator , Acta Applicandae Mathematicae, 2023, 184:1, SCI三区
[11]李平润, Generalized boundary value problems for analytic functions with convolutions and its applications,Math. Meth. Appl. Sci.,42 (2019), 2631-2645. SCI三区
[12]李平润, Singular integral equations of convolution type with reflection and translation shifts, Numer. Func. Anal. Opt., 40 (9) (2019),1023-1038. SCI三区
[13]李平润, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 61(1)(2016), 67-75. SCI三区
[14]李平润, On solvability of singular integral-differential equations with convolution, J. Appl. Anal. Comput., 9(3)(2019), 1071-1082. SCI三区
[15]李平润, Existence of solutions for dual singular integral equations with convolution kernels in case of non-normal type, J. Appl. Anal. Comput., 10(6)(2020), 2756-2766. SCI三区
[16]李平润, N. Zhang, M. C. Wang, Y. J. Zhou, An efficient method for singular integral equations of non-normal type with two convolution kernels, Complex Var. Elliptic Equ., (2021), https://doi.org/10.1080/17476933.2021.2009817. SCI三区
[17]李平润, Songwei Bai, Meng Sun, Na Zhang, Solving convolution singular integral equations with reflection and translation shifts utilizing Riemann-Hilbert approach, J. Appl. Anal. Comput., 12(2)(2022),551-567. SCI三区
[18]Meng Sun,李平润(通讯作者),Songwei Bai, A new efficient method for two classes of convolution singular integral equations of non-normal type with Cauchy kernels, J. Appl. Anal. Comput., 12(4)(2022),1250-1273. SCI三区
[19]Songwei Bai, 李平润(通讯作者),Meng Sun, Closed-form solutions for several classes of singular integral equations with convolution and Cauchy operator,Complex Var. Elliptic Equ., (2022), https://doi.org/10.1080/17476933.2022.2097661, SCI三区
[20]李平润, Holomorphic solutions for solving convolution integral equations with singular operators through Riemann-Hilbert approach, Journal of Computational and Applied Mathematics, 2023, accepted, SCI二区TOP期刊